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1. Introduction

The problem of representing gray-level images
on a binary display device is known as "dithering"
or "halftoning." (A good survey can be found in
Ulichneyl ). Dithering relies upon the fact that the
human visual system integrates information over
spatial regions, so that a spatial pattern of light and
dark can evoke a sensation approximating that of a
uniform gray area even when the individual display
elements can be resolved. Electronic image display
devices, such as cathode ray tubes and flat panel
displays offer the additional possibility of exploiting
the visual system’s integration in the time domain to
increase a display’s gray scale resolution; addition-
ally, it may be possible to exploit the visual
system’s spatiotemporal sensitivity to make dynamic
dithering noise which is less visible than the
corresponding static noise. In this paper we exam-
ine how a number of existing two-dimensional dith-
ering methods may be generalized to three dimen-
sions.

2. Temporal properties of vision

The potential power of these techniques is
rooted in the fact that the visual system has different
temporal responses to different image features.
Halftoning algorithms may exploit this by hiding
high frequency noise in the perceptual bands which
have a low-pass response. One of the best examples
is color: when two colored lights are exchanged or
flickered, the color will appear to alternate at low
flicker rates, but when the frequency is raised to
15-20 Hz, color flicker fusion occurs, where the
flicker is seen as a variation of intensity only. The
subject can eliminate all sensation of flicker by
balancing the intensities of the two lights (at which
point the lights are said to be equiluminant). When
the intensities are not balanced, the luminance flicker
can be seen at frequencies as high at 50-60 Hz.

The differential spatial properties of the
chromatic and achromatic systems have been
exploited in several halftoning algorithms?3. Mulli-
gan? proposed negatively correlating the dither
matrices in multi-component ordered dither to

reduce spatial luminance variation at the expense of
added chromatic noise. This can be done in the
temporal domain equally well. Mulligan and Ahu-
mada? , and Balasubramanian, Carrara and
Allebach3 used different spatial error filters for
achromatic and chromatic quantization errors in
iterative algorithms designed to find the visually
optimal halftone.

Other parameters besides color affect temporal
sensitivity. For example, the spatial frequency of an
achromatic pattern influences the temporal
sensitivity>11, For low to medium spatial frequen-
cies, temporal sensitivity is bandpass with peak sen-
sitivity between 5-10 Hz, while for patterns above 4
cycles per degree temporal sensitivity becomes
lowpass.

3. Algorithms

3.1. Dispersed dot ordered dither

The term ordered dither refers to a generd
class of algorithms in which the array of desired
input values is compared with a corresponding array
of threshold values. The output pixels are set or
cleared depending on the outcome of this com-
parison. "Dispersed dot" ordered dither usually
refers to the work of Bayerl2 who demonstrated an
algorithm for generating matrices which are optimal
under a certain set of assumptions. These matrices
insure that for any gray level, pixels are set in a uni-
form way across the cell.

Large dither matrices can be constructed using
arecursive algorithm. We start with the smallest
non-trivial matrix, in this case 2x2. We can gen-
erate two new matrices with twice the linear size by
a) enlarging the original matrix by replicating each
entry; or b) replicating the entire matrix. We then
multiply the entries of the second matrix by 4, and
form the final matrix by adding the values from the
first (enlarged) matrix. This process is illustrated in
figure 1. The procedure can be applied recursively
until the desired size of matrix is obtained.



Figure 1. Illustrates the generation of a 4 by 4 dither matrix from a 2 by 2 seed matrix.
The process of replication and rescaling may be applied recursively to generate arbitrarily
large matrices, and is easily extended to more dimensions (see text).

The matrices generated by this procedure are
completely determined by the starting matrix of size
2. If we ignore differences due to rotations and
reflections, then there are three possibilities for the
two-dimensional case, one of which generates the
Bayer matrices. For any choice of the seed matrix,
the algorithm insures that for any given level, the
number of set bits will differ by at most one
between any pair of quadrants, and this principle
holds recursively for subquadrants. The seed matrix
corresponding to the Bayer matrix produces a check-
erboard pattern when a density of 1/2 is requested,
while the other two seed matrices produce patterns
of horizontal or vertical stripes. Empiricaly, the
checkerboard pattern is less visible, so it is the pat-
tern of choice.

The matrix enlargement algorithm is easily
generalized to three dimensions by replicating in
three dimensions instead of two, multiplying the
entries of the input matrix by 8 instead of 4, and
adding this to each octant of the enlarged three
dimensional matrix. The number of possible 2x2x2
seed matrices for the three dimensional case is much
larger than for the two-dimensional case. If (and

thisis a big if) we ignore rotations in space-time
(6), as well as reflections (2) and purely spatial rota-
tions (4), then the number of distinct seed matrices
is 8!/(6*2*8)=840. We can apply the following
heuristics to reduce the search space: first, by anal-
ogy with the two-dimensiona case, we might
require that for a requested density of 0.5 that we
obtain a spatial checkerboard pattern in each tem-
poral frame; secondly, we might require that the
checkerboards in frame 1 and frame 2 have opposite
spatial phase. Another desireable constraint is that
for any input gray level, the number of thresholds
exceeded in each the two frames differ by at most 1.

A matrix that satisfies all of these properties
may be constructed from the 2x2 seed matrix shown
in figure 1 as follows: the first frame is made by
multiplying the matrix in figure 1 by 2. The second
temporal frame is formed by rotating this matrix by
90 degrees and adding 1 to each of the entries. This
seed cube can then be expanded to any desired size
(which is a power of 2) by repeated application of
the algorithm described above.



3.2. Temporal Error Diffusion

The method known as error diffusion was
introduced by Floyd and Steinberg!3 , and is gen-
erally agreed to produce output images of higher
quality than those produced using ordered dither. It
is a seria process which proceeds as follows: at
each pixel, the desired level is rounded to the
nearest quantization level, which is output. The
error is computed by subtracting the desired value
from the quantized value. This error is "diffused"
by subtracting fractions of it from the desired values
of nearby unquantized pixels. The precise pattern of
how the error is distributed determines the resulting
patterns.

The most obvious way to generalize this algo-
rithm to three dimensions is simply to diffuse the
error with a three dimensiona spread function. The
proportion of error which is diffused in the current
frame, as opposed to spread into the following
frame, can be used to shape the spatiotemporal spec-
trum of the resulting quantization noise.

The principle of temporal error diffusion can
aso be combined with any other two-dimensional
gpatial dithering algorithm as follows: we first
obtain a quantized image using any method we
choose. We then compute the error image by sub-
tracting the desired image from the quantized image.
The desired image for the second frame is then
modified by subtracting the error image from the
previous frame. This algorithm has the advantage
that no extra filtering is required, and the individual
frames can be processed using a parall€elizable algo-
rithm such as ordered dither. Thereis little oppor-
tunity, however, to control the spatiotemporal
parameters of the resulting quantization noise.

3.3. Visually optimal methods

Because of the inherently serial way in which
pixels are processed in the error diffusion algorithm,
it is impossible for a pixel to share its error equally
with all of its neighbors. This difficulty has been
overcome by a number of stochastic algorithms
which have been proposed recently3414-17 gj| of
which do basically the same thing. First, afilter is
specified which is applied to the error image. This
filter is usually designed to capture the contrast sen-
sitivity of the human visual system. The filtered
error image is then condensed to a single number,
such as the sum of the squared error, to give an

overall quality measure. Pixels are visited sequen-
tially and their states are changed so as to minimize
the error measure. To increase the chances of
finding the global optimum, the technique of simu-
lated annealing may be used, in which pixels are
occasionally set to states which increase the overall
error measure, in order to escape from local minima.
The probability that these (usually unfavorable) tran-
sitions occur is controlled by a parameter known as
the "temperature.” The image is "annealed" by
slowly reducing the temperature. Eventualy, the
image will "freeze" into a final state. The probabil-
ity that this state is the globa optimum increases as
the rate of cooling decreases.

Although this class of algorithm is the most
computationdly intensive of those which have been
discussed, it has been recommended as a benchmark
because of the straightforward way in which models
of visual quality can be integrated with the halfton-
ing process. Unlike error diffusion, where the
effective error filter must be obtained by recursive
application of the diffusion weights, here the finite
impulse response filter that is applied to the error is
the filter with respect to which the error is minim-
ized. Thus for the three dimensional case it is a
fairly straightforward matter to design a filter using
data on spatiotemporal contrast sensitivity.

To date most applications of this agorithm
have used a single two-dimensional low pass filter
to model visibility. This type of filter has the disad-
vantage that it is not particularly sensitive to
oriented patterns for which the visual system seems
to have specialized detectors. This defect becomes
more pronounced if we apply this simple approach
to three dimensions. The spatiotemporal analog of
two-dimensional orientation is motion; a three
dimensional lowpass filter tends to blur patterns
which move coherently through it, although such
patterns may be quite visually salient. For results
which are truly visually optimal, we need to filter
the error in a manner more consistent with how we
believe the visual system processes the input
imagery, namely with not one but an array of filters
tuned for different spatiotemporal orientations!8 ,
Visual models such as this will also be valuable for
obtaining objective measures of the performance of
the simpler agorithms described in the preceding
sections.



4. Conclusions

Spatiotemporal dithering is a potentially useful
way of extending the grayscale resolution of a
display device while at the same time reducing the
visibility of static artifacts. All of the two dimen-
sional spatia dithering algorithms currently in use
can be generalized to three dimensions in a fairly
straightforward manner.
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